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Abstract

To simulate adsorption in industrial applications and gain more insight into the
coupling of fluid flow and adsorption performance, adsorption models at larger
scales than just single particles are needed. In this thesis a model of the adsorption
on moving particles is applied to the lattice Boltzmann method using an Euler-Euler
approach. The adsorptionmodel is based onmass transfer as described by the linear
driving force model and can incorporate several mass transfer mechanisms, such
as film diffusion, surface diffusion and pore diffusion. Particles, their adsorbate
loading, and the solute are described by the advection diffusion equation with an
adsorption source term.

Using analytical solutions for a batch and fixed bed reactor the model and its cou-
pling with the fluid is validated. Grid studies are conducted to show the conver-
gence of the model. The applicability of the model to complex flow problems is
demonstrated in a static mixer with moving particles.
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Description 
 
Adsorption plays an important role in many industrial processes and is of great interest especially 
because of the role it plays in catalysis. It is used in both gas and liquid mixtures, as in water treatment 
for example to remove contaminants like phosphates. There are many models available that describe 
adsorption equilibria and kinetics and this field is still the object of active research. A majority of the 
literature about its application however deals with packed bed reactors, investigations into reactions on 
moving particles, like they are found in water treatment, are less common. 
 
For the development of processes at an industrial scale it is often impossible to simulate the kinetics on 
all the individually resolved particles in the reactor volume because the computational effort that would 
be needed. Instead, an Eulerian approach can be chosen to describe the disperse phase as a 
continuum. The reaction is then calculated as an average of many particles for a given cell volume. 
While this approach is used less often, it enables the simulation of entire process units and can be a 
useful tool for designing them. The challenge with this approach is to find the parameters relevant for 
adsorption, for example to calculate the available surface for adsorption from the particle distribution. 
Parameters for equilibrium and kinetics are mostly determined experimentally and often depend on 
many variables. These are therefore often only applicable in specific circumstances. For use in 
simulations the model should be as broadly applicable as possible. 

The goal of this thesis is the formulation of an adsorption model for the Euler-Euler model and to apply 
it to the lattice Boltzmann method (LBM). The model will include three phases: the continuous phase, 
the solved adsorbate and the disperse phase (adsorbent). All three are treated as a continuum and the 
mass transport of the adsorbate to the solid will be modeled. The adsorption model can be validated 
separately from the particle dynamics and its convergence will be tested. Additionally, a suitable example 
system has to be found with substances that have known adsorption parameters which are usable for a 
simulation. Some analytical solutions for different configuration are known and can be used to validate 
the model at a constant particle density. Afterwards the adsorption model can be coupled with the particle 
dynamics. The final model will be used to simulate 2D and 3D cases. 
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Introduction
Chapter1

Many industries and processes use adsorption as a separation technique for multi-
component mixtures. The applications can range from small scale chromatography
of proteins [1] to large scale water treatment [2] and petrochemical refinement [3].
For the analysis and optimization of industrial processes, a large simulation domain
with complex geometries and fluid flows are often required. At this scale it is im-
possible to resolve the interface of the particles and fluid and a volume average in
some sense is needed [4].

The lattice Boltzmann method (lbm) is gaining interest as an alternative to Navier-
Stokes solvers. It has some unique advantages, such as its simple structure and
ease of parallelization [5], [6]. While there have been some uses of lbm to simulate
adsorption on the pore-scale or on discrete particles [7]–[9], only few examples of
the combination of an Euler-Euler approach to particle and adsorption modelling
exist. Peng et al. [10], [11] have used lbm to simulate adsorption on clusters of
unresolved particles with a constant particle density. Maier et al. [12] have done
work on the adsorption on moving particles but with an Euler-Lagrange approach.
Ma et al. [13] have chosen a similar approach to the one taken in this thesis in
simulating adsorption using volume averaging but with a multiple relaxation time
model. Their work was restricted to simpler kinetics, only applied to a fixed bed
reactor and did not provide any data as to the convergence of their method. On
the other hand, for other nse solvers there are examples of Euler-Euler models for
reactions in fluidized bed reactors [14], [15].

This thesis aims to build on these approaches and combine an Euler-Euler descrip-
tion of moving particles with more detailed adsorption kinetics. It first formulates,
then employs an adsorption model based on the linear driving force model with
transport equations in the form of the advection diffusion equation for particles,
solute and particle loading to form advection diffusion reaction equations. These
equations are solved using the lattice Boltzmann method with each component of
the model being represented by its own lattice. The fluid is one-way coupled with
all the other lattices, which themselves are coupled according to the adsorption
model.
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The first part of this thesis will introduce the underlying concepts and equations
for describing adsorption and fluid dynamics. The chosen adsorption model is
explained as well. In the second part the combined advection diffusion reaction
equations and the numerical model is shown together with explanations on the im-
plementation of the simulations. The last part shows applications and validations
of the model in a series of simulations ranging from a simple batch reactor to the
complex flow field in a static mixer.

2 Chapter 1 Introduction



Theory
Chapter2

2.1 Adsorption

Adsorption is a complex process with several interacting mechanisms and length
scales involved. In short, it describes a mass transfer process between phases. A
substance is removed from a liquid and deposited on a solid or the surface of a liq-
uid. The material that provides the surface is called adsorbent and the substance
that is deposited is the adsorbate. The amount of deposited substance is called

Particle Surface

Liquid Phase
Solute

Adsorbate

Adsorbent

Figure 2.1: Adsorption terminology. Adapted from [16]

particle or adsorbent loading ?. The system generally reaches an equilibrium at a
certain adsorbent loading and corresponding solute concentration. An equilibrium
of course implies that there are in fact two reactions: adsorption, where the ad-
sorbate is accumulating on the surface and desorption, which is the release of the
substance from the surface. Both the properties of the surface and the liquid phase
affect the process. Concentration, temperature, pH, surface area and porosity are
the key factors here [16].

Although adsorption is fundamentally a surface process, the adsorbent uptake is
usually measured as a mass related loading ? with

? =
;0

;�

, (2.1)

where ;0 is the mass of the adsorbed substance and ;� the mass of the adsorbent.
Alternatively ? can also be a quotient based on molar concentration using <0. We
will use a mass concentration � = ;(/+! for the solute concentration as well, where
;( stands for the mass of the solute in solution with the solution volume +!.
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A rigorous theoretical description of adsorption has only been achieved for simple
cases like pure gas adsorption. Since this thesis is concerned with adsorption from
aqueous solutions, which are even in the simplest case multi-component systems,
these theoretical developments will not be expanded upon. For adsorption from liq-
uid solution the adsorbent uptake can only ever be measured relative to the solvent
uptake. This makes general prediction of the relevant parameters much more diffi-
cult. This fundamental difference, however, does not matter that much in practice
and most of the following observations apply to both types of systems [16].

Adsorption in industrial practice is, as a separation process, almost always con-
cerned with multiple components. In this thesis we will focus on single solute sys-
tems. Multicomponent systems generally differ in two ways: competitive adsorp-
tion changes the equilibrium, which can be accounted for by using multicomponent
isotherms, and secondly interactions during mass transport, which necessitates the
inclusion of the concentration gradients of all components into the kinetic model.

2.1.1 Adsorption Isotherms

The adsorption equilibrium is characterized using so-called isotherms, which de-
scribe the eventual loading ?eq of a particle once the equilibrium is reached. This
can take several hours to days, depending on the material.

An adsorption isotherm in general is the relationship between the concentration in
the fluid phase � and the loading, or ?eq = 5 (�eq) with ) = const. Most commonly
this function is determined in batch experiments. There are several models that
can be used to describe this relation using differing numbers of parameters [17].
Three of the most common ones have been used in this thesis and are shown in
fig. 2.2. The simplest form is simply a constant ? =  , which corresponds to an
irreversible reaction. This may only be applicable for very high concentrations and
is only mentioned here for completeness.

Linear Isotherm

The linear relationship between concentration and loading is also called Henry
isotherm and relates the loading to concentration by

? =  � , (2.2)
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Figure 2.2: Isotherm types: Linear (black), favorable Langmuir(green), Freundlich (red)

with  as the single isotherm parameter often given in !/6.

It can be sufficient for applications with very small concentrations, as it is the lim-
iting case for � → 0 [16]. Additionally, it is useful in model validation, because it
enables the formulation of analytical solutions for many models. For this reason it
is used in the validation section of this thesis.

Freundlich Isotherm

The Freundlich isotherm is a purely empirical observation, but describes many pro-
cesses, including many liquid adsorptions systems, fairly well [16]. In this case the
loading is

? =  �< , (2.3)

with the isotherm parameters  and <. Depending on the exponent <, the isotherm
can either be favorable (< < 1) or unfavorable (< > 1). The unit of  depends on
the units of � and crucially also <. For this reason, conversion between units for ?
and � is tricky but certainly possible.

Langmuir Isotherm

A very popular choice is the Langmuir isotherm. It is based on the assumption
of a homogenous surface and monolayer adsorption. In the equilibrium we get a
loading

? = ?;
1 �

1 + 1 � (2.4)
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with the two constants ?; and 1. In the case of adsorption from liquid, unlike in
gas adsorption, the parameters ?; and 1 do not hold any physical significance and
are simply fitting parameters.

2.1.2 Adsorption Kinetics

Because reaching equilibrium can take some time, the kinetics play an important
role in many processes. Several steps are involved in the adsorption process, the
slowest of which will be rate determining [16]:

1. Bulk transport is the usually purely advective transport of the solute to the
particle in question. It only depends on the flow field in the reactor and
around the particle.

2. Every particle will have a boundary layer around it. The diffusive transport
through that film is called film diffusion or external mass transport but should
not be confused with the bulk transport in step 1. This is step 1 in fig. 2.3.

3. Intraparticle diffusion is the transport from the surface of the particle to the
interior by two different mass transfer mechanisms, pore and surface diffu-
sion. They are steps 2 and 3 in fig. 2.3 respectively.

4. The last step is the actual surface interaction and what we would call the
adsorption reaction.

In most cases it is assumed that step one and four are fast enough to be disregarded
and only external mass transfer and intraparticle mass transfer are considered [18].

1
2

3Film diffusion

Surface diffusion

Pore diffusion

Figure 2.3: Illustration of mass transfer mechanisms. 1: film diffusion, 2: pore diffusion, 3:
surface diffusion
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Common model assumptions are: constant temperature, completely mixed bulk
solution, mass transfer can be described as diffusion process, surface reaction is
much faster than diffusion and the adsorbent particles are spherical and identical.

Based on these rate determining steps, equations for the kinetics can be derived.
In the simplest case, only one step needs to be included, but combinations are also
possible and may result in more accurate models.

Alternatively some empirical rate equations have been proposed and are frequently
used in the literature describing adsorbents. Their predictive power, however, is
very limited as they can combine several mechanisms in their constants [5], [19],
[20]. Their rate constants are usually only applicable to the specific experimental
setups they were determined with.

These adsorption rates can be incorporated as a source term into the advection-
diffusion equations, as shown by He [21] and Peng [11]. The experimental determi-
nation of adsorption kinetic parameters can be difficult, so it is important that we
use as few as possible parameters in our model.

Pore Volume and Surface Diffusion Model

The most complete model, which incorporates external mass transfer and intra-
particle diffusion, is called Pore Volume and Surface Diffusion Model or pvsdm [22].
The different mass transfer mechanisms that comprise this model are listed in the
following sections, as they can be the basis for their own models when a single
mechanism dominates.

These models are all based on the description of the adsorption behavior of a single
particle, some even taking into account the concentration profile inside the parti-
cle.

Film Diffusion

The first step is the transport of the solved adsorbate to the surface of the adsorbent
particle, also called external mass transfer. A lower concentration of adsorbate at

2.1 Adsorption 7



the surface �A causes a gradient that is confined to a layer with thickness X. Un-
der the assumption of a linear gradient and disregarding all other mass transfer
mechanisms, the mass transfer can be determined using Fick’s Law:

¤; 5 =
�!

X

�A

;�

(� − �A) . (2.5)

The quotient �A/;� = 0; is the ratio of surface area to available mass of adsorbent
and is a common measure in adsorption. �! is the diffusion coefficient of the liquid
phase, � is the concentration in the liquid phase and �A is the concentration near
the particle surface.

The hydrodynamic conditions in the fluid influence the degree to which film diffu-
sion plays a role. For high fluid velocities, caused for example by increased stirring,
film diffusion will become less important and the following transfer mechanisms
will dominate [16].

Surface Diffusion

Surface diffusion describes the transport of the adsorbate in the adsorbed state on
the internal surfaces or pores of the particle. It takes place in pores that are so small
that the adsorbing molecules cannot escape the influence of the pore surface [18].
From Fick’s law we get

¤;A = d%�A
m?

m@
, (2.6)

which can be transformed using a material balance for a spherical particle to

m?

mB
= �A

(
m2?

m@2
+ 2
@

m?

m@

)
. (2.7)

Depending on whether film diffusion is considered as well, it can be in series with
surface diffusion, which would be reflected in the boundary condition for the con-
centration at the particle surface.

Pore Diffusion

While surface diffusion takes place on the walls of the pores, pore diffusion refers
to mass transport in the pore liquid where the influence of the pore surface can be
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neglected [18]. This makes the calculation more difficult as the equilibrium has to
be taken into account at every point in the pore system. A simplified equation [16]
was found to be

d>
m?

mB
= �>

(
m22>

m@2
+ 2
@

m2>

m@

)
. (2.8)

Surface and pore diffusion can be combined into effective diffusion coefficients.
For that, either a surface diffusion model or a pore diffusion model is used as the
basis and the other mechanism is incorporated as a contribution depending on the
isotherm slope. For linear isotherms either approach leads to an identical solution
and the two mechanisms can be considered equivalent. [16]

2.1.3 Linear Driving Force Model

Adsorption primarily happens at interfaces and is a heterogeneous reaction and,
especially with moving particles, not a bulk phenomenon. This makes it very dif-
ficult to describe accurately using an Euler-Euler approach where the particle and
interfaces cannot be resolved. We cannot, for example, incorporate a granular
representation of the concentration gradients inside every single particle. To work
around this issue, Glueckauf and Coates [23] proposed a linearized approach, called
linear driving force model (ldf), which is now widely used in adsorption modeling,
especially in the description of fixed bed reactors [24], [25].

It postulates an area inside the particle with a linear concentration gradient similar
to film diffusion and a core with a spatially constant concentration ?̄(B). This is
shown in figure 2.4. The model was also derived by Liaw et al. [26], who found that
overall this is equivalent to a parabolic concentration profile in the particle. While
the model was originally developed to simplify the surface diffusion model it can
be extended to include several transfer mechanisms as will be shown below.

The internal mass transport through surface diffusion is

¤;int = d>9A (?A − ?̄) , (2.9)

with the surface diffusion coefficient 9A and the particle density d>. The surface
loading is determined by the isotherm ?A (B) = 5 (�A (B)). When external mass trans-
fer is not included, �A = �. For spherical particles it was shown [23] that

9A =
5�A
@%

. (2.10)
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¤;int

Solid phase film

Particle surface

Bulk solution

@

?, 2

?̄(B)

?A (B)
2A (B) = 2(B)

Figure 2.4: Linear concentration profile in particle. Adapted from [16].

The mass balance for a single particle and the surrounding fluid reads

¤;int =
;�

�A

3?̄

3B
= −+!

�A

32

3B
. (2.11)

When we substitute eq. (2.9) for the mass transport ¤;int in eq. (2.11) we find the
mass transfer equation

3?̄

3B
= 9A

�A

+�
(?A − ?̄) = 9∗A (?A − ?̄) . (2.12)

For convenience we combine the factors in (2.12) so that

9∗A = 9A
�A

+�
=

15�A
@2>

. (2.13)

Together with the mass balance we can also calculate the change in concentration

−32
3B

= 9∗A
d>(1 − Y�)

Y�
(?A − ?̄) (2.14)

with the factor d> (1−Y� )
Y�

=
;�

+!
converting the adsorbate loading, which is defined

per mass of adsorbent, to concentration, which is defined per volume of liquid. The
particle volume is included using the bed porosity Y�.

10 Chapter 2 Theory



If we do not incorporate film diffusion into the model, the surface loading is simply
the equilibrium loading corresponding to the bulk concentration:

?A = 5 (�) (2.15)

It has been shown that this model can achieve impressive accuracy while reducing
the computational effort [27], [28] which makes it especially useful for numerical
simulations. A short comparison between the ldf model and the hsdm can be
found in appendix A.

To increase the accuracy of the model further, a variable mass transfer coefficient
can be introduced [16]. Using

9∗A = 9∗A0 expl?̄ (2.16)

with the additional empirical parameters l and 9∗A0. These parameters however
have to be determined through curve-fitting of experimental data.

Film Diffusion

The model can be extended to include film diffusion on the outside of the particle
as well. This configuration is shown in fig. 2.5. The mass flow due to film transfer
is

¤;film = 9 5
�A

;�

(� − �A) . (2.17)

It acts as a boundary condition which we solve to get the surface concentration �A.
With the condition that ¤;int = ¤;film as a basis we get

d>9A (?A − ?̄) = 9 5 (� − �A) (2.18)

where the surface loading ?A is a function of �A via the equilibrium. Once the new
surface concentration has been found, the corresponding surface loading can be
calculated and used as before in eq. (2.12).

Pore Diffusion

The ldf model can also be applied to pore diffusion with some simplifications.
By replacing the quotient m?/m� that occurs in the model with ?0,4?/�0, as shown

2.1 Adsorption 11



¤;int ¤;film

Boundary layerSolid phase film

Particle surface

Bulk solution

@

?, 2

?̄(B)

?A (B)
2(B)

2A (B)

Figure 2.5: Linear concentration profile in particle with film diffusion. Adapted from [16].

by [16], [29], an effective mass transfer coefficient can be formulated to include the
pore diffusion coefficient.

9∗A,eff =
15�A
@2>

+
15�>

@2>

�0

d> ?0,4?
(2.19)

Here �0 denotes the inlet solute concentration and ?0,eq the corresponding equi-
librium loading. This new coefficient can be substituted in eq. (2.12) and (2.14) in
cases where pore and surface diffusion both contribute significantly.

Cyclical Adsorption

The ldf model uses a very simple equation for the mass transfer coefficient 9A. It
has been shown that this assumption is not always valid for cyclical processes with
short cycle times [30], [31]. The cause for this are the assumptions made about the
linear concentration profile inside the particle. This will lead to desorption being
underestimated [32].

Dominating film diffusion, on the other hand, will reduce the influence of cyclicality
because it is independent of the concentration profile inside the particle.

12 Chapter 2 Theory



2.1.4 Reaction Kinetics

Experimental data is very often fitted with empirical reaction kinetic models [16],
[33]. While they can produce well fitting results, these models do not directly allow
any mechanistic insight. They rely only on fitting parameters, which are often only
valid for a specific experimental setup [16]. The most common ones are called
pseudo-first-order and pseudo-second-order kinetics [34], [35]. They are based
on the difference between the equilibrium loading and the current loading of the
particle. The first order equation is

3?̄

3B
= 91

(
?eq − ?̄

)
(2.20)

and the second order
3?̄

3B
= 92

(
?eq − ?̄

)2
. (2.21)

The equations are similar to the linear driving force model, the difference however
is in the driving force. The equilibrium loading ?eq is the final particle loading of
the experiment and therefore a constant. The surface loading used in the linear
driving force model is dependent on time.

2.1.5 Parameter Estimation

In most cases adsorption parameters cannot be predicted. Experiments have to be
conducted, and the parameters can then be determined by using an appropriate
model and fitting techniques.

Isotherm parameters are usually determined in batch experiments by measuring
the concentration at different points in time and then the adsorbed amount is cal-
culated with a mass balance. The isotherm parameters are determined by fitting
an appropriate isotherm model. Attempts at predicting isotherms using, amongst
others, potential theory have been made, but their predictive power is often lim-
ited. [16]

If we want to model adsorption kinetics in a wide spectrum of conditions, we need
to separate the influence of different mass transfer mechanism and determine their
respective mass transfer coefficients. The film mass transfer coefficient can for ex-
ample be determined in a short fixed bed reactor, as the film diffusion will be dom-
inant at first. Several empirical correlations also exist, most using the Sherwood
number as a function of the Reynolds number Re and the Schmidt number Sc.

2.1 Adsorption 13



Intraparticle diffusion coefficients for surface and pore diffusion can be determined
in batch experiments by applying the linear driving force model and calculating
an average value of 9∗A from the change in concentration 3�/3B. Worch [28] also
gives an empirical correlation for the adsorption of micropollutants onto activated
carbon. For other systems, different correlations would be needed.

2.1.6 Batch Reactor Model

The simplest reactor for adsorption is a batch reactor. The differential mass balance
reads

;�

3?̄

3B
= −+!

3�

3B
. (2.22)

Integration with the initial conditions �(0) = �0 and ?̄(0) = 0 leads to

?̄(B) = +!

;�

(�0 − �(B)) (2.23)

We can visualize this as an operating line as seen in fig. 2.6 with the term −+!/;�

as the slope.

�eq

?eq

�0

?0,4?

Isotherm

Operating
line

Concentration �

Ad
so
rb
en

tl
oa

di
ng

?

Figure 2.6: Operating lines in a batch reactor and a fixed bed reactor.

Together with the mass transfer equations for 3�/3B and 3?̄/3B, that were derived
by looking at a single particle, the equilibrium relationship ? = 5 (�) and initial
conditions this system of equations is complete. It can usually only be solved nu-
merically, except for the case of a linear equilibrium, where an analytical solution
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exists. The application of the single particle kinetics to the batch reactor assumes
homogenous particles and conditions in the volume element.

In summary, when using the ldf model, the system of equations is as follows

3?̄

3B
= 9∗A (?A − ?̄)

−32
3B

= 9∗A
(1 − Y�)
Y�

d> (?A − ?̄)

d>9A (?A − ?̄) = 9 5 (� − �A)
?A = 5 (�A)

?̄(B = 0) = 0, �(B = 0) = �0

(2.24)

The third equation only applies when film diffusion is included. This system of
equations is also the basis for the discretized model where each node at each time
step can be thought of as a small batch reactor.

2.1.7 Fixed Bed Reactor Model

In a fixed bed reactor the adsorbent is usually in granular form and is packed in a
porous bed. During operation, solute of a certain concentration is introduced at the
inlet and a steady flow is maintained. The solute travels from the inlet through the
column and accumulates on the adsorbent particles until equilibrium is reached.
A distinct concentration front forms as initially all the adsorbate can be removed
from the solution, leading to a much lower concentration in most of the bed than
at the inlet. Only after enough adsorbate has accumulated on the particles and the
reaction slows down, does the concentration increase downstream. The velocity
of this concentration front is much slower than that of the fluid and depends (in
the ideal case) only on the inlet concentration and the amount of adsorbent in the
bed.

For adsorption where kinetics play a role, the equilibrium is not reached instanta-
neously and a characteristic mass transfer zone (mtz) can be observed. Its shape
depends both on the kinetics and the equilibrium [23]. An example can be seen in
figure 2.7. The progress of the center of mass of the mtz, however, will still only
depend on the equilibrium.

There are three stages that every particle experiences, which can be seen as more or
less distinct zones. These are shown in fig 2.7 as well. Zone I is simply an unloaded
bed with � = 0 and usually an initial loading ?(B = 0) = 0. The second zone is the

2.1 Adsorption 15
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Figure 2.7: Concentration profile with mtz in a fixed bed adsorber

mtz where the mass transfer takes place and the concentration rises. In the third
zone, which is closest to the inlet, the particles are already saturated and no net
mass transfer takes place. Therefore, the solution still has its initial concentration.
The time it takes for the center of mass of the mtz to reach the outlet is called ideal
breakthrough time B73

1
. The balance equation in the ideal case of instantaneous

equilibrium is
�0 ¤+B731 = ?0;� + �0Y� +' , (2.25)

with +' as the reactor volume. This gives us the ideal breakthrough time as

B731 =
?0;�

�0 ¤+
+ Y� +'

¤+
= Bst + B@ , (2.26)

which can be split into the stoichiometric time Bst and the residence time B@. If
Bst � B@, the residence time can be neglected [16]. By substituting the column
height ℎ using +' = ℎd� we can derive the velocity of the mtz with

Dmtz =
ℎ

B73
1

=
�0 ¤+/�'

?0d� + �0Y�
. (2.27)

For favorable isotherms a self-sharpening effect can be observed [23]. This means
that even an initially flattened concentration front would become vertical again.

The adsorption behavior in fixed bed columns is usually analyzed using so-called
breakthrough curves (btc). These are constructed by measuring the outlet concen-
tration over time and are just a mirrored concentration profile (see sect. 4.2) but
much easier to measure. The axes are related through the travelling velocity of the
mtz. Apart from the general shape there are two values that are used to analyze the
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breakthrough behavior. The first is the real breakthrough time B1, which is the time
at which the outlet concentration first rises and the second is the stoichiometric
time Bst as an approximation of the ideal breakthrough time.

Diffusion, amongst other factors, leads to a phenomenon called axial dispersion
in fixed bed reactors. It will lead to a spreading of the mtz and therefore a flatter
breakthrough curve. Many models, including many implementations of the ldf, do
not include this term. It is however important to keep in mind because we use the
advection diffusion equations and diffusion cannot be entirely disregarded. There
are ways to include the dispersion in the film diffusion coefficient [36] to account
for this phenomenon in a model.

2.2 Fluid Dynamics

The goal of this thesis is the coupling of fluid dynamics and adsorption dynamics.
Therefore, in addition to the adsorption model, we also need a model for the fluid
dynamics. All components in the system are described by an Euler approach. They
can be described by continuity, momentum and species balances, depending on the
type of the transported component.

2.2.1 Navier-Stokes Equations

The equations for mass and momentum that describe the fluid, namely the Navier-
Stokes equations (nse), are the following.

md

mB
+ ∇ · (du) = 0 (2.28)

This represents the compressible continuity equation with the density d and the
fluid velocity u.

The momentum equation is

mdu

mB
+ (du · ∇)u = −1

d
∇> + `∇2u + L , (2.29)

with the pressure >, the viscosity ` and a force L. This single equation in Einstein
notation stands for up to three equations, one for every dimension of the problem.
These equations represent the compressible nse.
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Often the assumption d = const. is made, which leads to the incompressible variants
of the continuity equation

∇ · u = 0 (2.30)

and the momentum equation

mu

mB
+ (u · ∇)u = −1

d
∇> + a∇2u + L , (2.31)

now with the kinematic viscosity a. The lbm actually solves a weakly compressible
nse [5] because density is in fact variable.

To close the system of equations, we also need an equation of state. A common
example for fluids is the isothermal equation of state

> = d')0 = d22A , (2.32)

with 2A as the speed of sound.

Volume Averaged Navier Stokes Equations

In order to describe dense particle flows more accurately without having to deal
with the particle-fluid interface in detail, an averaging procedure can be employed.
This achieves a two-way coupling between the fluid and the particles. The basic
idea is to find equations describing the relevant fluid properties in a volume around
an arbitrary point in space x with the averaged influence of particles included. To
that end an averaging operator 〈· · · 〉 is introduced. Following Whitaker[37] and
Enwald[38], the volume average is used:

〈· · · 〉 = 1
+ 5

∫
Vf

· · · 3+ . (2.33)

Both an intrinsic and a superficial average are used with the porosity as a conversion
factor. As an example, the superficial average over just the volume of fluid, indicated
by a phase indicator function j, is the fluid volume fraction Y:

〈j〉 = Y . (2.34)

The phase indicator function j(F) for the phase � is 1 if F ∈ � and 0 otherwise.
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Applying the procedure to the nse, the resulting volume averaged equations (vanse)
are as follows [38], [39].

mYd

mB
= ∇ · (Yd〈u〉) (2.35)

mYd〈u〉
mB

+ (Yd〈u〉 · ∇)〈u〉 = −Y∇〈>〉 + `∇2(Y〈u〉) + YL (2.36)

The force term L includes amongst body forces also an additional term that repre-
sents the back coupling from the particles and which has to be modelled [40]. Vol-
ume averaging of the ade works similarly but without any new forcing tems [41],
[42].

2.2.2 Solute

The dissolved adsorbate is described by its own species mass balance [14], [15] in
the advection diffusion reaction equation (adre)

m�

mB
+ ∇ · (�u) = ∇ · (�∇�) + A (2.37)

with � as the concentration and A as a source term. It combines an advective compo-
nent in the second term on the left-hand side and a diffusive term on the right-hand
side with the diffusion constant �.

The source term A = ¤;ads comes from the change 3�/3B in a volume element as
introduced in section 2.1.6.

The adre has a very similar structure as the incompressible nse with

du → �, duu + >O → �u, a → �, L → A (2.38)

which makes it a great candidate to be solved by the lattice Boltzmann method as
well.

2.2.3 Particles

Particle density

The moving adsorbent particles are described by the advection diffusion equation,
meaning they are not resolved individually but represented by a particle concen-
tration d� (F). The symbol of d� is rooted in the common usage of bulk density in
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adsorption literature, which is the same as a particle concentration, although usu-
ally not treated as a transportable property. The advection diffusion equation (ade)
for the particles is

md�

mB
+ ∇ ·

(
d�u>

)
= ∇ · (�∇d�) + L , (2.39)

where � is a diffusion coefficient, u> the particle velocity and L a force term. We
use d� as a measure of mass of particles per volume of flow, as opposed to d>,
which is the material density of the particles. Their motion is coupled to that of the
fluid through the fluid velocity u 5 which is calculated using the nse. While for very
small particles it is reasonable to simply use the fluid velocity as the particle velocity,
another approach is the use of a force term L that depends on the fluid velocity to
calculate the particle velocity. One choice for the force term is for example Stokes’
drag force [43] with

LSt = 6cda@>(u 5 − u>) (2.40)

where u 5 is the fluid velocity and u> the particle velocity.

Particle loading

In addition to the particle density we also track the particle loading ?̄, as described
in section 2.1.3 with

m?̄

mB
+ ∇ · (?̄u) − ∇ · (�∇?̄) = d> ¤;ads . (2.41)

Here we also have a source term ¤;ads that represents the change in loading from
adsorption. It is the same as the source term in the solute transport equation but
with an additional factor of the particle density, since the loading is spread amongst
the particles.

The inclusion of diffusion for the particles makes the model a dispersive one. The
coefficient � can include contributions from different mechanisms, such as diffu-
sion, mixing etc. This makes it possible to be solved using the lattice Boltzmann
method. Depending on the particle size it may be more desirable to have no diffu-
sion at all. This can only be approximated by a very small diffusion coefficient �.
How this can be acheived will be picked up again in section 3.3.4.
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Model
Chapter3

3.1 Dimensionless Quantities

Dimensionless quantities are a useful tool in engineering, especially when compar-
ing systems of different scales or materials. In the following sections, the dimen-
sionless quantities that can be used to describe adsorption systems as encountered
in this thesis are introduced.

Reynolds Number

Arising from the nse through non-dimensionalization, the Reynolds number

Re =
C!

Y� a
(3.1)

is the quotient of inertial forces to viscous forces. It contains the fluid velocity C, a
characteristic length !, the dynamic viscosity a and optionally the bed porosity Y�.
It can be used to gauge whether the flow is laminar or turbulent.

Care has to be taken when choosing the characteristic length !. Because the choice
is in principle arbitrary, it can differ between types of flows and publications. A
common definition for flow in a pipe, for example, is the diameter of the pipe and
for flow in porous media the particle diameter is often used.

Schmidt Number

The Schmidt number
Sc =

a

�!
, (3.2)

with the fluid viscosity a and the diffusion constant �! of a particular solute in the
fluid describes the relative importance of momentum diffusivity compared to mass
diffusivity. It can be seen as the ratio of the thickness of hydrodynamic layer and
the mass-transfer boundary layer.
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Péclet Number

The quotient of advective transport and diffusive transport is called Péclet number.
For mass transfer it is defined as

%4 =
C!

�!
= Re Sc (3.3)

and can be also be formed from the product of the Reynolds number and Schmidt
number. The Péclet number is for example used in fixed bed reactors to quantify
the influence of axial dispersion on the result. For values over 40 the reactor can be
assumed to exhibit plug flow behavior [36].

Sherwood Number

Estimation of film mass transfer coefficients is often done using the Sherwood num-
ber Sh. It is the quotient of the convective diffusion rate and the diffusion rate

Sh =
9 53>

�!
. (3.4)

Several equations exist to correlate the Sherwood number with the Reynolds and
Schmidt numbers. An overview of the many correlations can for example be found
in Worch [16].

Biot Number

The Biot number, originally defined for heat transfer problems, can also be used for
mass transfer. In this case it is defined as

Bi =
9 5 @>�=

�Ad>?4
(3.5)

and describes the ratio of surface diffusion and film diffusion. If it is larger than
50, film diffusion is negligible, for Bi < 0.5 film diffusion is dominant [16].
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3.2 Adsorption Model

As previously mentioned, we use an Euler-Euler approach to describe the different
components in the model. The equations for the particle and species transport are
the advection diffusion equations with an added source term. They resemble the
nse in structure and can be solved with an adapted lattice Boltzmann method as
shown in [40].

The source termwhichmodels the adsorption process stems from themass equation
of the adsorption model. We have chosen the linear driving force model for the nu-
merical calculations primarily because of its simplicity. The main advantage is that,
because no concentration gradients inside the particle are involved in the model, a
single quantity describing the state of the particle is sufficient. This makes it eas-
ily applicable to the Euler-Euler approach with moving particles, where this single
quantity can be transported. The other quantity in the model, surface loading, can
be calculated for each time step from the surrounding fluid.

The combination of the ade and adsorption source terms for the linear driving force
model results in the following equations. Without film diffusion:

¤;int =
39A
@>

(
d�?A − �?̄

)
,

m�

mB
+ ∇ · (�u) = ∇ · (�4∇�) −

1
Y
¤;int ,

m�?̄

mB
+ ∇ ·

(
�?̄u>

)
= ¤;int ,

?A = 5 (�A) ,
�A = � ,

(3.6)

where �?̄ denotes the particle loading per volume of fluid as opposed to per mass
of adsorbents as it is usually done when the mass of the available adsorbent is
constant. The conversion is simply �?̄ = d�?̄. This is done because the model
includes the transport of adsorbed mass by moving particles, so using a volumetric
mass density is more appropriate. The factor to convert from reactor volume to
adsorbent volume 1/Y is only implemented when using the vans equations.

The last equation in (3.6) is the boundary condition for �A in the case of no film
diffusion. With film diffusion we replace the boundary condition for �A with

9A (d�?A − �?̄) = 9 5 (� − �A) . (3.7)
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If external mass transfer is included, the boundary condition for the surface con-
centration and loading has to be solved numerically, since it is implicit. The Newton
method has been used in literature [44] to solve this, a C++ implementation of MAT-
LAB’s fsolve function [45] is used in this thesis.

The coupling of the different lattices and equations is shown in fig. 3.1. Hexagons

particle 
loading

solute 
concentration

reaction 
kinetics

surface 
loading

equilibrium

particle 
density

fluidvelocity

Figure 3.1: Adsorption model flow diagram

mark the four different lattices used in the model and the rounded rectangles stand
for the equations or quantities involved. The top part depicts the adsorption cou-
pling and the lower part the velocity coupling.

3.2.1 Nondimensionalization

The adsorption equations can be converted to a dimensionless form. In some cases
this makes it possible to find analytical solutions. We define the dimensionless con-
centration - and loading . using the inlet concentration �0 and the corresponding
equilibrium loading ?0,eq as

- =
�

�0
, . =

?

?0,eq
. (3.8)

The dimensionless Freundlich isotherm is then

. = -< , (3.9)
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and the Langmuir isotherm

. =
-

' + (1 − ')- , (3.10)

with the separation factor

' =
- (1 − . )
. (1 − -) =

1
1 + 1 �0

. (3.11)

We can also apply the separation factor to the Freundlich isotherm and get

' =
-1−< − -

1 − -
(3.12)

which now depends on the concentration - . For adsorption models in which a
constant ' is assumed, a mean value has to be used.

Using these dimensionless quantities, the mass balance now reads

- + �1 .̄ = 1 , (3.13)

with the distribution factor
�1 =

;� ?0,eq

+! �0
(3.14)

and the mass transfer equation

3.̄

3)
= .A − .̄ . (3.15)

These equations are used for the analytical solutions. For the simulation we have
to rely on the original equations, because the time step of the adsorption equations
has to match that of the fluid simulation. The conversions done there are explained
in section 3.4.

3.3 Lattice Boltzmann Model

The equations in chapter 2 can in principle be solved numerically by a number of
different methods. For this thesis the lattice Boltzmann method was chosen. It re-
covers the Navier-Stokes equations but using a different approach than traditional
solvers and is a so-called mesoscopic approach, as it deals with particle populations
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which can be understood to lie in between the macroscopic nse and the micro-
scopic particle kinetics. Instead of solving the nse directly, it numerically solves the
Boltzmann equation. The macroscopic nse can be recovered in a separate step.

The unique approach behind the lbm is the discretization in space, time and ve-
locity space. The discrete velocity distribution function 57 (x, B) can be thought of
as a particle density function for particles with discrete velocities, also called pop-
ulations. Only a certain set of velocities c7 is allowed which all lead to neighboring
lattice nodes. They are chosen so that a particle would travel from one node to
the next in exactly one time step. Starting with the Boltzmann equation and after
discretization of space, time and velocity we get

57 (x + c7ΔB, B + ΔB) = 57 (x, B) + Ω7 (x, B)ΔB , (3.16)

with the collision operator Ω7 (x, B). This is known as the lattice Boltzmann equa-
tion.

This equation only deals with populations, but we also need to recover the macro-
scopic quantities. They can be calculated by taking moments of the distribution
functions. The zeroth moment gives density and the first moment gives momen-
tum:

d =
∑
7

57 dC =
∑
7

c7 57 . (3.17)

The second moment is defined as

� =
∑
7

c7c7 57

and is related to the stress tensor.

Analysis of the lbm through a Chapman-Enskog expansion and comparison with
the nse reveals that the Navier-Stokes equations can indeed be recovered with the
viscosity being connected to the relaxation time g of the collision operator by

a = 22A

(
g − ΔB

2

)
(3.18)

with 2A as the speed of sound. [5] The equation of state for the lbe is > = 22A d.

The structure of eq. (3.16) lends itself to the separation into a streaming step and
a collision step. This is also how most solvers are implemented. The populations
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are propagated to neighboring nodes according to their velocities in the streaming
step, this is represented by the left-hand side of (3.16). In the collision step new
population densities are calculated using the collision operator. This step can usu-
ally be a local operation, meaning no neighboring nodes need to be accessed. The
lbm is therefore easily parallelized.

BGK-Collision Operator

An important contribution to recovering physical behavior is the collision operator.
Using the fairly simple bgk operator the nse can be recovered. It is defined as

Ω7 = −
57 − 5

4?

7

g
.

This collision operator can be viewed as a relaxation of the populations 57 towards
an equilibrium given by

5
4?

7
(x, B) = E7d

(
1 + ci · u

22A
+ (u · c7)2

224A
− u · u

222A

)
.

The rate of relaxation is given by the relaxation time g. Weights E7 are used, which
are specific to each velocity set. The macroscopic variables that are included in
the equilibrium are computed according to eq. (3.17). An important property of
the equilibrium is that its moments are the same as those of the populations 57

themselves.

Other operators, like trt (two relaxation times) and mrt (multiple relaxation
times) are available and can bring accuracy and stability improvements.

Discretization and Lattice Units

lbm uses a square lattice with the lattice spacing ΔF. Most commonly lattice units
are used in the simulation, where ΔF★ = ΔB★ = 1. This has the advantage of
also making the problem dimensionless, which is always recommended for fluid
simulations. The chosen conversions may however be different from conventional
nse solvers. Three conversion factors denoted by C are needed to form a valid unit
system. All other conversions can be derived from those. Commonly we set ΔF★,
ΔB★ and d★ to unity and get the conversion factors

C: = ΔF, CB = ΔB and Cd = d . (3.19)
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The lattice relaxation time g★ is related to the relaxation time by g = CB g★. In most
cases the lattice relaxation time is used in the following sections, especially when
listing actual values, but the star notation has been omitted.

Velocity Sets

The velocity space in lbm is discretized with a set of velocities c7. The nomenclature
for these sets usually follows the scheme of �3&? with 3 denoting the number of
spatial dimensions and ? the number of discrete velocities. Several sets are avail-
able, depending on the application. They represent discrete directions in which
particles can move.

For example, the D3Q7 velocity set includes the directions perpendicular to the
faces of a cube with the lattice node at its center plus the zero velocity. In this case
we would need two sets of weights E7, one for the zero velocity and one for all the
others, since their vectors have the same length. Other common velocity set for
two dimensions are D2Q9 and D3Q19 for 3D. In these cases there are several sets of
weights, as the velocity vectors are of different lengths.

There is a trade-off between computational cost and accuracy, both increase for
larger sets. For advection diffusion we can actually use fewer velocities, which is
why D3Q7 is used in this thesis.

The speed of sound depends on the velocity set and for most 2★A =
√

1/3. However,
for the lattice D3Q7 it is different from the standard with 2★A,ade =

√
1/4.

3.3.1 Advection Diffusion

The discretization of the advection diffusion reaction equation follows the example
of the nse, which can easily be justified by their very similar forms. Following the
same discretization procedure we get

67 (x + ciΔB, B + ΔB) − 67 (x, B) = Ω7 (x, B) + ΔB (7 (x, B) , (3.20)

where (7 is a suitable source term that fulfills the condition
∑
7 (7 = A.

The collision operator Ω7 also follows the bgk approach

Ω7 = −1
g

(
67 − 6

4?

7

)
,
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with the equilibrium defined as

6
eq
7

= E7�

(
1 + c7 · u

22s
+ (c7 · u)2

224s
− u · u

222s

)
(3.21)

with the concentration �.

Instead of the viscosity, we have the diffusion coefficient � which is defined simi-
larly:

� = 22A

(
g6 −

ΔB

2

)
. (3.22)

The concentration can be obtained from the zeroth moment of the advection diffu-
sion equations [46]

� =
∑
7

67 . (3.23)

This is the only moment that is conserved, momentum is not, so the velocity has
to be calculated using the nse, or lbe in our case. For this reason a lattice with
only a few discrete velocities is sufficient but often higher isotropy lattices are used
anyway [5].

With the addition of a source term, some redefinitions have to bemade. A Chapman-
Enskog analysis reveals an unwanted term [47] that can be eliminated by setting

� =
∑
7

67 +
(7ΔB

2
and ( =

(
1 − 1

2g6

)
E7A (3.24)

similarly to the approach used for the lbe with a force term [48].

3.3.2 Boundary Conditions

Boundary conditions are required in all attempts to solve differential equations.
First the general types of boundary conditions are introduced and afterwards their
specific implementations for the lbm are shown.
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First Order

A first order boundary condition, also known as Dirichlet boundary condition, sets
the missing value G according to some function 5 :

G = 5 . (3.25)

In the context of thermal advection diffusion this is also called temperature bound-
ary. The equivalent in our case is concentration. This type is often used at inlets.

Second Order

Instead of the value itself, the Neumann boundary condition sets the normal deriva-
tive at the boundary:

mG

m<
= 5 . (3.26)

In thermal advection diffusion this is called a heat flux boundary. For advection
diffusion concerned with mass transport, a Neumann boundary sets mass transport
through diffusion to zero, but does not affect advection [49].

Lattice Boltzmann boundaries

The lattice Boltzmann method poses some unique challenges when it comes to
boundaries. In general the aim is to find values for the undefined populations that
are entering the domain. One of the simplest boundary implementations is called
bounce back, where the outgoing populations are simply used as incoming popu-
lations. This results in a no-slip boundary.

A periodic boundary is realized by using the populations that exit at one side of the
domain as the entering populations on the other side.

A velocity boundary can be implemented using a bounce back approach with an
additional term that includes the velocity at the wall uE:

57 (x1, B + ΔB) = 5 ∗7 (x1, B) − 2E7dE
c7uE
22A

, (3.27)

where x1 is the boundary node’s position.

30 Chapter 3 Model



Pressure boundaries can be realized with an anti-bounce-back approach where the
sign of bounced back populations is changed [5]. The equation has a similar struc-
ture as the velocity boundary. The difficulty here lies in the estimation of the density
dE and the velocity uE.

3.3.3 Accuracy

Different error sources contribute to the overall error of a simulation. An obvious
error in any discretized equation is the truncation error, which should tend to zero
when ΔF and ΔB go towards zero. In a stable system this should also dictate the
order of convergence. Generally the lbm is second order accurate in respect to both
temporal and spatial discretization [5], [50].

One important property of the lbm is the relation of the viscosity with the lattice
relaxation time and discretization steps

a = 2★2A

(
g★ − 1

2

)
ΔF2

ΔB
, (3.28)

which means that viscosity can influence the accuracy of the bgk model.

Multiple other error terms can contribute to the overall error, such as modelling
errors. One example is the compressibility error, which scales with

O("02) ∝ 1/22A ∝ ΔB2/ΔF2 . (3.29)

Another is the bgk truncation error, which scales with (g − 1/2)2. [5]

Convergence & Scaling

The main tool to assess the accuracy of discretized equations is the convergence
towards the solution measured as the experimental order of convergence (eoc). It
is easier than determining the formal truncation error and is done by reducing ΔB

and ΔF successively and measuring the error to a given solution.

The obvious approach is to keep ΔF ∝ ΔB, this is called acoustic scaling. Generally,
diffusive scaling is used when measuring the order of convergence for lbm. This
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is done to keep the compressibility and discretization error of the same order by
setting

ΔF2 ∝ ΔB2

ΔF2
→ ΔB ∝ ΔF2 , (3.30)

which reduces the compressibility and discretization errors simultaneously [51].
This has the consequence of making the lbm effectively first order accurate in
time [5].

The eoc can be determined using three numerical solutions q7 for different mesh
sizes with a constant scaling factor @. If, for example, the number of points is
doubled, @ would be 2. The order of convergence is [52]

eoc =

log
(
q3−q2
q2−q1

)
log(@) . (3.31)

It can also be estimated by the slope of a line fitted to the error in a double loga-
rithmic plot over the grid number.

Error Calculation

The most common measure of the error between a numerical approximation ?<

and the known solution ?0 is the so called L2 error norm. The relative error is then
calculated as follows:

‖?< − ?0‖2
‖?0‖2

=

√∑
F (?<(F, B) − ?0(F, B))2∑

F ?
2
0(F, B)

. (3.32)

3.3.4 Stability

The fact that the relaxation time and viscosity or diffusivity, depending on the lat-
tice type, are connected, has consequences for stability considerations.

A necessary stability condition for the bgk operator is that g★ > 1/2 [5]. There are
however several other criteria and boundary conditions which can reduce the stable
region considerably. The maximal stable lattice velocity depends on the relaxation
time [5] but for g > 1 the maximum is a constant.
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In the case discussed in this thesis the coupling between two types of lattices com-
plicates the choice of parameters. Using the Schmidt number with the definitions
of the viscosity and diffusivity in lbm we get

Sc =
a

�
=

2★2A,�

2★2A,ade

ΔBade
ΔB�

(g★� − 0.5)
(g★ade − 0.5) . (3.33)

Assuming the same ΔB for both lattices, this gives us the matching relaxation times
for the ade and the nse lattices

g★nse = (g★ade − 0.5)
2
★,2
A,ade

2
★,2
A,�

Sc + 0.5 . (3.34)

With the values of (2 commonly being up to around 1000, this makes the relation
very sensitive to the value of g★ade and values very close to the minimum of 0.5 are
often required.

An alternative approachmight be the utilization operator splitting or substeps where
the fluid lattice has a larger ΔB than the advection-diffusion lattice, thereby allowing
for more control over stability and accuracy. This has for example been proposed
by Micale et al. [14] in their simulation of reaction kinetics in fluidized beds.

3.4 Implementation

The OpenLB library already has dynamics implemented for the fluid and ade with
a source term. The values for the source term are computed in a custom coupler
at each time step and saved for each lattice node. In the collision step this source
term is then included according to eq. (3.20) and eq. (3.24).

The coupling is done as a separate step before collision by a PostProcessor. Its
job is to get the required values from the different lattices, calculate the source term
and write the new values to the lattices. It utilizes the existing implementation
of sourced advection diffusion dynamics in OpenLB. The flow of information was
shown in fig. 3.1

The code was designed to accommodate all the different flavors of the ldf model,
such as with and without film diffusion, different isotherms etc. Fig. 3.2 shows the
classes that were implemented for this project. Different isotherms can be imple-
mented by inheriting from the Isotherm class, as is shownwith the linearIsotherm.
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getSchmidtNumber()

getReynoldsNumber()

Figure 3.2: UML for classes related to adsorption coupling.

The coupling post processor calls the getReactionRate()method in AdsorptionReaction
which can use either the pure surface diffusion model or a combined film and sur-
face diffusionmodel by calling two different overridingmethods called getSurfaceLoading().
These two methods take as parameters either only the solute concentration � or the
particle loading ?, the particle concentration d� and �.

Due to the fact, that three different lattices with different densities which poten-
tially differ by orders of magnitude need to be coupled, the choice of units and their
consistent use is important. A custom UnitConverter called AdsorptionConverter
was therefore implemented. The customary units of the material properties as used
in the literature are listed in table 3.1.

Table 3.1: Process parameters

Parameter Symbol Unit

Concentration � ;6/!
Loading ? ;6/6
Density d 96/;3

Length ! ;
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Because the values for particle and solute concentration and loading can differ by
orders of magnitudes, the actual simulation is preferably conducted in lattice units
to avoid inaccuracies and instabilities. For coupling, the factors in the equations
either have to be adjusted or the quantities temporarily converted back. This is done
by the accessing the matching conversion factors in the AdsorptionConverter.
The choice for the conversion factors for the concentration and particle density is
relatively straightforward:

C� = �0, Cd = d� , (3.35)

where �0 is the inlet concentration and d� is the bed density, when necessary a
particle inlet concentration might be used. The conversion for the loading requires
some more thought. We don’t actually use the loading ? but �?, which has the units
gm−3. There are several factors that determine the maximum occurring loading
concentration �? in a simulation, such as the isotherm, solute concentration and
particle concentration. Choosing the same factor as for the particle concentration
results in values that are of the same magnitude as the corresponding loading ?.
So, during simulation we use the conversion

�?̄ = Cd �★?̄ . (3.36)

It is important to remember however, that, in the case of varying particle density,
the actual loading that corresponds to the loading concentration is dependent on
the local particle concentration

?̄(F) = d� (F) �?̄(F) . (3.37)
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The linear driving forcemodel that was introduced in the previous sections is used in
the following section in several simulations to validate its accuracy and demonstrate
its practical application. Although the model is applicable without any changes to
two- and three-dimensional problems, all simulations were set up in 3D, because
its eventual application will be in 3D applications. All simulations were performed
using the OpenLB [6] library.

4.1 Batch Reactor

First we look at the adsorption model itself and solve the equation on its own. It can
easily be applied to a batch reactor, where an analytical solution for linear isotherms
exists [16] with the dimensionless quantities as defined in sec. 3.2.1. Following the
linear driving force model, the dimensionless concentration - evolves over time
as

- ()) = 1
�1 + 1

+ �1

�1 + 1
exp (−(�1 + 1))) . (4.1)

It uses a dimensionless time ) with

) = 9∗A B . (4.2)

4.1.1 Simulation Setup

The batch reactor is realized as a cube with periodic boundaries on all sides. The
velocity for all components is zero and we can assume perfect mixing or spatially
uniform conditions. This results in a system that simply solves the differential equa-
tions for adsorption, without any fluid or particle interactions.

The process parameters and material properties that were used in the simulations
are listed in table 4.1.
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Table 4.1: Process parameters for batch reactor.

Parameter Value Unit

Isotherm parameter  45 !/6
Inlet concentration �0 1 ;6/!
Adsorbent bulk density d� 0.94 96/;3

Adsorbent density d> 1000 96/;3

Column length ! 0.1 ;

Particle radius @> 1.5 × 10−4 ;

Surface diffusion coefficient �A 5 × 10−11 ;2/A2
Film diffusion coefficient � 5 7 × 10−11 ;2/A2

The model can also be made to include film diffusion. That system of equations
is shown in eq. (3.6) and (3.7). There is an analytical solution for pure film diffu-
sion as well, it is structurally the same as eq. (4.1) but with a differently defined
dimensionless time ) . In the case of film diffusion

) =
9∗
5

�1
B (4.3)

where, in the style of the surface diffusion coefficient, 9∗
5
=

39 5
@>

. As previously
stated, the new boundary condition for the surface concentration has to be solved
numerically.

4.1.2 Results

The evolution of the concentration in the reactor � over time can be seen in fig. 4.1.
The concentration is homogenous in the entire reactor because we solve an equation
that only depends on time. The top x-axis shows the dimensionless time ) , the
bottom axis the time B in seconds. When using the dimensionless ) , the shape
of the curve only depends on the value of �1 which, for a linear isotherm, is a
function of the slope of the isotherm  and the bulk density of the adsorbent d�
alone. Specific kinetics are then introduced through the conversion to time B.

We get good agreement with the analytical solution of the linear driving forcemodel
in eq. (4.1) as shown by Worch [16]. This of course only demonstrates the correct
implementation of the model and the convergence of the discretized equations to-
wards the model equation. On the topic of the accuracy of the model itself and
the validity of the model in the first place, the reader may refer to existing litera-
ture [25], [27], [31] and appendix A.
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Figure 4.1: Concentration in batch reactor with surface diffusion and linear isotherm.

Fig. 4.1 also shows the amount of adsorbate taken up by the adsorbent. In the case
of a batch reactor this loading curve is a mirror of the concentration. The result
of the simulation is the loading concentration �? which can be transformed to the
loading by dividing through the particle density d�. The equilibrium loading ?eq is
the amount of solute adsorbed in the state of equilibrium. For the system depicted
above with a linear isotherm, �eq was determined through the simulation to be
0.0231mg/L which corresponds to an equilibrium loading of 1.0393mg/g.

Experiments with different isotherms are shown in fig. 4.2. With the kinetic (diffu-
sion) parameters being the same, the influence of the equilibrium on the rate of the
reaction is clearly visible. The same magnitude for the parameters was used (the
units are different) and so the shape of the isotherms themselves and the equilib-
rium loading vary to a similar degree as the curve shown. Although the equilibrium
concentration has not quite been reached yet after 6 seconds, it is higher for the
Langmuir isotherm depicted in fig 4.2.

The ldf model was developed for surface diffusion, but film diffusion can be added
as a boundary condition for the concentration. In order to test film diffusion on its
own, we can use a very small Biot number �7 to eliminate the influence of surface
diffusion. The results of pure film diffusion with Bi of order 1 × 10−10 are shown
in fig. 4.3 together with the previous result as a comparison. We can again see
good agreement with the analytical solution and conclude that the addition of film
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Figure 4.3: Concentration in batch reactor with film diffusion and linear isotherm.

diffusion was successful. The two mechanisms can of course be easily used in con-
junction, just by setting their respective mass transfer coefficients to appropriate
values.
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Convergence

Because an analytical solution is known, we can very easily assess the error of the
simulation. The L2 error of the simulation as described in eq. (3.32) and the ana-
lytical solution of (4.1) is shown in fig. 4.4 If we use diffusive scaling, which is the
standard approach for LBM, we get an eoc of 2. The relaxation time gade is 0.6.
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o
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EOC: 2

Figure 4.4: L2-error for batch reactor using diffusive scaling with the number of spatial steps
on the abscissa. The simulation results for different spatial resolutions are marked
with blue dots.

In this case the solution only depends on the time and because the concentration
is homogenous at all time, diffusion does not play a role. So, additionally the error
is plotted over the time step in fig. 4.5. Now we only achieve an eoc of 1. Diffusive
scaling means ΔB ∝ ΔF2, so this finding suggests that we only have a convergence
order of 1 for the time step. The previous eoc of 2 was then caused by the quadratic
scaling of the time step and the actual convergence is of order one. When using
acoustic scaling the eoc is always 1.

Simulations with a prescribed source term as function of time and an analytical
solution as it was used by Seta [47] were conducted and show a similar convergence
behavior (see appendix B). Since that test doesn’t use the adsorption model at all,
this suggests that this convergence behavior is not related to the particular source
term proposed in this thesis.
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Figure 4.5: Error for batch reactor using acoustic scaling with the number of time steps on the
abscissa. The simulation results for different time steps are marked with blue dots.

4.2 Fixed Bed Reactor

After having validated the solution to the equations describing mass transfer of
adsorption, the next step is to look at a fixed bed reactor with moving solute. The
goal here is to validate the combination of the advection diffusion equation with
the source term from adsorption.

Once an equilibrium has been reached and the constant pattern behavior is estab-
lished, the analytical solution found by [23] for both the Langmuir and Freundlich
isotherm applies. Adapted to non-dimensional values [16] we get an implicit equa-
tion for the concentration - with

'

1 − '
log(-) − 1

1 − '
log(1 − -) = #A (−) + 1) + X� (4.4)

where the dimensionless quantities ) , - and #A are used, with

) =
B

Bst
, - =

2

�0
and #A = 9∗A Bst (4.5)

and an integration constant X� . We assume that the residence time B@ can be ne-
glected. The separation factor ' for the Langmuir isotherm is

' =
1

1 + 1 �0
. (4.6)
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This is the solution to a plug-flow model, meaning dispersion (e.g. diffusion) is not
accounted for. Our model used for the simulation is a dispersed-flowmodel because
it includes a diffusion term.

4.2.1 Method

Eq. (4.4) is implicit, so we need to solve it numerically for use in the error calcu-
lations. This was done using scipy’s fsolve function, which uses a modified Powell
method. The integration constant X� can be found using the material balance of a
btc:

) (-=1)∫
)=0

(1 − -) 3) = 1 . (4.7)

Some exemplary values can be found in [16].

Once the constant pattern has been reached, the eventual breakthrough curve has
already formed inside the column as the concentration front. We can transform
the x-axis to convert between the two. Time and length along the column can
be converted by mirroring around Fst using B = 2Fst − F and because we use the
dimensionless time ) = B/Bst with B =

?0,4? � F

�0 ¤+
, all factors cancel each other. In

combination and additionally centering around ) = 1 we get

) =
B

Bst
=

2Fst − F

Fst
, (4.8)

where Fst is the position of the center of mass of the btc, approximated as the
position F where �/�0 = 0.6. This procedure removes any influence of the outlet
boundary on the shape of the breakthrough curve because we sample from the
center of the column.

4.2.2 Simulation Setup

The reactor is realized as a three-dimensional cuboid with periodic boundary con-
ditions on all sides except the inlet and outlet. A constant fluid velocity is set for
the entire volume. The inlet has a Dirichlet boundary condition with �0. The pro-
cess parameters are listed in table 4.2. While the adsorbent bulk density may be
uncharacteristically low for a fixed bed reactor, it is reasonable for a slurry reac-
tor and reduces the simulation time considerably. The reason is twofold: first, the
stoichiometric time Bst is proportional to the mass of adsorbent, so more adsorbent
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Table 4.2: Process parameters for fixed bed reactor.

Parameter Value Unit

Isotherm parameter 1 ?; 20 ;6/6
Isotherm parameter 2 1 0.8 ;6/6
Inlet concentration �0 1 ;6/!
Adsorbent bulk density d� 1 96/;3

Column length ! 0.05 ;

Column width 0 0.0016 ;

Particle radius @> 3 × 10−4 ;

Surface diffusion coefficient �A 5 × 10−11 ;2/A2

means later breakthrough, and secondly, the increased mass of adsorbent leads to
larger reaction rates, which has implications for stability. To counteract this, the
time steps have to be increased, which leads to a longer simulation time.

4.2.3 Results

Fig. 4.6 shows the concentration profile in the column after 3400 seconds. The
stoichiometric time Bst in this case is about 6800 seconds, which leads to the mtz
being roughly centered and enables a clean plot. The intraparticle mass transfer
rate #A = 28 is adjusted to reflect that the breakthrough curve was taken at the
midpoint of the column. Had the full length of the column been used, the value
would be 56.

The breakthrough curve that resulted from the transformation previously men-
tioned is shown in fig 4.7. It shows good agreement with the analytical solution.
There are no obvious deviations in the shape of the curve. We see the characteristic
shape of a breakthrough curve with dominating surface diffusion: the curve is not
symmetrical around ) = 1, instead it is slightly flatter for larger concentrations.

Two ways to align the measured curves and the solution are possible. The first is
to calculate the expected position of the center of mass and shift the curve by that
value, the second is to try and find the center of mass of the actual measured curve.
For symmetrical curves this point is 0.5�0. Because in this case surface diffusion
dominates, it is actually around 0.56�0. In this section all plots are aligned using
the second method, so that they all cross exactly at ) = 1, and we can concentrate
on the differences in shape. We will discuss the alignment error separately.

44 Chapter 4 Application



0.0 0.2 0.4 0.6 0.8 1.0
F/!

0.0

0.2

0.4

0.6

0.8

1.0

�
/�

0
#A = 28

Figure 4.6: Concentration profile for fixed bed reactor with N=21 at B = 3400A.
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Figure 4.7: Breakthrough curve for fixed bed reactor with N=21.

The expected position of the mtz at any point in time can be calculated by rear-
ranging eq. (2.27) to get the column position ℎ(B). For B we insert the simulation
time Bsim. If we compare the expected position and our approximation from the
measured curve we get a relative error of around 2%.

The influence of the kinetics and isotherm on the shape can be seen in fig. 4.8. The
surface diffusion mass transfer parameter 9∗A is proportional to �A and determines
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the speed of the mass transfer. For larger values, which is shown by the green curve
in fig. 4.8, the curve comes closer to the ideal breakthrough curve with a vertical
concentration front. All the curves in fig. 4.8 show a Langmuir isotherm, where a
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Figure 4.8: Breakthrough curve in fixed bed reactor with different kinetic and isotherm param-
eters.

larger parameter 1 results in a steeper isotherm. As expected, the orange curve
with 1 = 0.5 is indeed flatter.

Our implementation allows easy access to the value of the source term at any point
in time. This is depicted in fig. 4.9 for two separation factors '. A smaller value for
' can be caused by a steeper isotherm or a larger initial concentration. The source
term is shown as a dotted line. It is clearly visible that the peak’s height as well as
the shape of the curve are different. For larger ' the curve is more asymmetrical
with a steeper rise and a longer tail, which is typical for surface diffusion control.
This is also visible in the breakthrough curve.

The solution given in eq. (4.4) does not include diffusion. This however is impossi-
ble to replicate with the approach used in this thesis, since we solve the advection
diffusion equation. The influence of diffusion can be seen in fig. 4.10. For larger
values of � the curve flattens and the breakthrough point appears earlier. We can
see that for values of � = 5 × 10−11, which corresponds to Sc = 1559, we already
get very good agreement with the analytical solution. Although in this example
the particles are fixed in place, and therefore the advection part of eq. (2.37) is ir-
relevant, diffusion does play a large role. The diffusion coefficient of the particle
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Figure 4.9: Concentration and source term for different separation factors.
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Figure 4.10: Breakthrough curve for different diffusion coefficients with N=21.

and loading lattices also have an impact on the result. Since we are investigating
the convergence to � → 0 and not any specific substance, all ade lattices used the
same diffusion coefficient.
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Convergence

A series of simulations with a fixed diffusion coefficient will not converge to the
analytic solution, for this reason ΔF, ΔB and Sc are scaled together. When scaling in
a ratio of 1:1:1, this will keep the relaxation parameter g constant, similar to diffusive
scaling. In this case gadv = 0.501. The resulting errors are shown in fig. 4.11. It
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Figure 4.11: Error based on shape and position along the column for different resolutions #.

shows both the error caused by differing shapes and the difference in the position of
the center of mass of the curve, called alignment error. Surprisingly they both have
very similar values as well as convergence behavior. The order of convergence is
around 1.37. This means that we get convergence towards a non-dispersive solution
even when using a dispersed-flow model.

Just looking at the fluid diffusion, it contributes an error around order 0.75. In-
terestingly the alignment error increases with increasing Sc. This can be seen in
fig. 4.12, which shows the convergence purely based on diffusion with no changes
in ΔF or ΔB, instead with changing relaxation parameters gadv ranging from 0.52 to
0.5002.

Fixed bed reactors can be modelled very well by the linear driving force model [25]
and we have now demonstrated that our model does so as well.
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Figure 4.12: Error based on shape and position along the column for different Sc and fixed
resolution.

Volume Averaged Equations

As a step towards its future use the simulations were also performed using the vol-
ume averaged Navier Stokes equations. By taking the porosity into account the
volume that is available for the fluid decreases and so the flow rate of solute de-
creases as well. This will lead to longer stoichiometric times. In the adsorption
model this is accounted for only in a porosity factor in the source term for the
solute concentration. Because we divide by the stoichiometric time Bst, a correct
implementation of the vans equations has therefore no effect on the results in the
nondimensionalised graph.

Fig. 4.13 shows the concentration profiles for two simulations, one with the nse
and one with the vanse. The center of mass of the curves F2 is marked with dashed
lines. The shape is again caused by the smaller value of the intraparticle mass
transfer rate #A used in these simulations and is to be expected. The breakthrough
time is proportional to the porosity Y and the position of the center of mass F2 is
inversely proportional.

Table 4.3 shows the breakthrough times and curve positions for two different porosi-
ties and their ratios. The numerator and denominator in the ratios for the time and
distance are chosen so that in each case they reflect the porosity. Porosity of 1 in
this context means that porosity is not taken into account. The two simulations
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Figure 4.13: Concentration profile for different porosities. The vertical lines mark the center of
mass of the curve.

have a ratio of 0.9471, which matches the porosity with a relative error of 0.0063 or
about 0.63%. This was achieved with a resolution of 21 nodes and gade = 0.5001.

Table 4.3: Breakthrough curve parameters and corresponding ratios

Quantity NSE VANS Ratio
Y 1 0.941 0.941
Bst (s) 6410 6810 0.941
Fst (m) 0.0244 0.0229 0.941
F2 (m) 0.0244 0.0231 0.9471

Table 4.4: Process parameters for porosity investigations in a fixed bed reactor

Parameter Value Unit

Isotherm parameter 1 ?; 1 ;6/6
Isotherm parameter 2 1 0.5 ;6/!
Inlet concentration �0 10 ;6/!
Adsorbent bulk density d� 100 96/;3

Particle radius @> 5 × 10−4 ;

As the parameters of the two most recent simulations are in some places quite
different, the new values are listed in table 4.4.
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4.3 Static Mixer

As an example for a more industrial application a static mixer was chosen. This
showcases all aspects of the model with moving solute and fluid and moving par-
ticles, which means a variable particle density. While the linear driving model is
especially suitable for a fixed bed reactor, with the modifications proposed in this
thesis, it can also be applied to other scenarios like this. For this much more compli-
cated setup there was no solution or experimental results available for comparison,
but it can be used as a more illustrative example of the possibilities of the model.

4.3.1 Simulation Setup

The geometry of the mixer can be seen in fig 4.14 with the concentration of particles
and solute after a steady state has been reached. The two other components, fluid
and particle loading, are not visible. The particle loading follows the path of the
particles exactly. It is zero at the inlet and only increased through adsorption after
contact with the solute. Particles are injected on the left-hand side and the solute
on the right side. At the upper outlet a velocity boundary is set with a velocity so

Figure 4.14: Static mixer with separate inlets for particles and solute.

that the fluid flows out at the top. The fluid velocity is one-way coupled with the
other lattices, in effect dragging the solute and particles with it.
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Table 4.5: Process and simulation parameters for static mixer.

Parameter Value Unit

?; 20 ;6/6
1 0.5 ;6/!
�0 1 ;6/!
d� 1 96/;3

! 0.0133 ;

@> 5 × 10−5 ;

�A 5 × 10−11 ;2/A2
9 5 1.37 × 10−2 ;2/A2
g 0.6125

In this setup the choice of simulation parameters is restricted by the coupling de-
mands and stability concerns brought up in sec. 3.3.4. We need the time step of all
lattices to match, which can only be achieved by carefully selecting the relaxation
parameters and diffusion coefficients.

4.3.2 Results

The resulting particle loading can be seen in fig 4.15. It shows a gradual mixing

Figure 4.15: Loading (green) in a static mixer.

of the two phases and the resulting reaction product. This image shows a steady
state, so all particles will experience the loading shown in the image. Because the
setup has laminar flow, the mixing is relative low and particles do not experience
fast changing conditions.
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With a setup like this, the limits of the linear driving force model need to be kept
in mind. This was described in section 2.1.3. A cyclical absorption and desorption
that would occur if particles moved in and out of areas of high solute concentration
might not be captured accurately. In this laminar case this inaccuracy should not
be very large, because the particles and solute are coupled to the fluid and move
the same way.

The advection diffusion lattices can produce negative concentrations at concentra-
tion fronts where gradients are large. This applies to both the particle and solute
lattice and also occurs when there is no reaction. This can be seen in the detail view
of fig. 4.16. Additionally, a wave pattern of fluctuating sign in the concentration can

Figure 4.16: Particle concentration in mixer showing negative concentration. White represents
a concentration of 0.

be seen, which originates at the concentration front. The solute concentration in
fig.4.15 also shows these waves. This behavior was also observed in the fixed bed re-
actor but to a much smaller extent. It unfortunately also leads to negative loading,
as the three lattices are directly coupled.

In conclusion, we can say that the adsorption model can be successfully applied
to moving particle systems, but it is affected by stability problems of the advection
diffusion solution.
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Conclusion
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A model for adsorption on moving particles using a linear driving force was devel-
oped and incorporated into the advection diffusion reaction equation. The model
can be solved using the lattice Boltzmann method with separate lattices for fluid,
solute, particles and particle loading. The primary mass transport mechanism de-
scribing adsorption is surface diffusion but both external mass transfer in the form
of film diffusion and alternative internal transfer mechanisms, namely pore diffu-
sion, can be added as well. Different isotherms are possible as well.

Comparison with an analytic solution for the adsorption kinetics in a batch reactor
has shown good accuracy. A convergence study showed an order of convergence
of 1 for the time step and an eoc of 2 for diffusive scaling. This behavior can also
be observed for other source terms that only depend on time. The model predicts
breakthrough curves in a fixed bed reactor well and convergence towards the ex-
act solution was demonstrated. The influence of different adsorption parameters
and dispersion caused by diffusion was explored as well. When reducing the fluid
diffusion coefficient together with the discretization steps ΔF and ΔB an experi-
mental order of convergence of around 1.4 towards a no-dispersive solution can be
observed.

Additionally, the volume averaged Navier Stokes equations were used to better ac-
count for the particle volume. The expected delay of the breakthrough was ob-
served.

The model was then applied to a more complex flow in a static mixer with moving
particles to demonstrate its potential for use in investigations of the influence of
fluid flow on adsorption performance.

Further work can be done to implement the more accurate ldf model with variable
mass transfer coefficients, if the added accuracy is needed. Desorption as seen in
a moving bed reactor for example could be another area of study on the way to a
complete model of adsorption processes in complex fluid flows. Difficulties with
stability caused by, for example, the coupling of the ade and nse lattices and large
source terms could be addressed by using alternative approaches like the multiple
relaxation time lbm.
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List of Symbols

?̄ Average particle loading in core.

L Body force

u fluid velocity

¤; 5 Mass flow in film diffusion

¤;( Mass flow in surface diffusion

Bi Biot number

Pe Péclet number

Re Reynolds number

Sc Schmidt number

Sh Sherwood number

Ω7 Collision operator

d density

d� Bed density / Particle concentration

d% Particle material density

�A Particle surface area

1 Isotherm parameter 2 for Langmuir isotherm

� Concentration

�0 Inlet concentration

27 Lattice velocity

�A Surface concentration

2A Speed of sound

�1 Distribution factor for batch reactor
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�! Diffusion coefficient in fluid

�A Surface diffusion coefficient

57 Particle distribution density function

 Isotherm parameter 1

9∗
5

Film diffusion mass transfer coefficient

9∗A Surface diffusion mass transfer coefficient

;� Adsorbent mass

;0 Mass of adsorbed substance

;( Mass of solute

< Isotherm exponent

#A Dimensionless mass transfer coefficient (surface diffusion)

> Pressure

? Particle loading

?; Isotherm parameter 1 for Langmuir isotherm

?0,eq Equilibrium loading corresponding to �0

?eq Equilibrium loading

' Separation factor

A Source term

(7 Lattice Boltzmann source term

) Dimensionless time

+! Liquid volume

E7 Lattice Boltzmann velocity weights

- Dimensionless concentration

. Dimensionless loading
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Comparison of LDF and HSDM models
AppendixA

The homogeneous surface diffusion model (hsdm) and the linear driving force
model ldf both make similar assumptions. They both only solve for surface dif-
fusion, but the linear driving force model simplifies the concentration profile inside
the particle.

For both models an analytical solution exists when using a linear isotherm. The
solution for the ldf was shown in (4.1), the solution for the hsdm [53] is

- = 1 − 1
1 + ��

(
1 −

∞∑
<=1

6�� (�� + 1) exp(−C2<)�)
9 + 9�� + C2<�2

�

)
, (A.1)

where C< is the nth root of
tan C< =

3C<
3 + ��C2<

. (A.2)

An example solution for both models can be seen in fig. A.1. While the ldf clearly
differs from the more accurate hsdm solution, it does capture the shape of the curve
reasonably well, while being much easier to solve[16], [54].
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Figure A.1: Comparison of hsdm and ldf kinetic models.
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Source Term Validation
AppendixB

We want to, first and foremost, determine the temporal convergence of a source
term, because the adsorption source term only depends on time. Following the
example in Seta [47] a time dependent source term given by a function is imposed.
The equation to be solved is

m)

mB
+ u · ) = �∇2) + & . (B.1)

Prescribing the source term to be only a function of time, later called type exp,

& = U exp(UB) (B.2)

results in the solution
) (F, G) = exp(UB) . (B.3)

The velocity is zero, so no contribution of the advection term is expected.

The relative !2 error is shown in fig. B.1 marked as blue. It exhibits an order of
convergence of 1 for both acoustic and diffusive scaling.

On the other hand, prescribing the source term with a spatial component (type sin)
to be

& =
(
U + 2�^2

)
sin(^F) sin(^G) exp(UB) (B.4)

results in the solution

) (F, G) = sin(^F) sin(^G) exp(UB) . (B.5)

The results, together with the previous, can be seen in fig. B.1. With these four
sets of errors we can try to figure out the different contributions of spatial and
temporal scaling. As we saw before, when the source is only a function of time,
the convergence with respect to time is one. When the solution contains a space
dependent term, there is a difference between the scaling methods. In the spatially
varying case acoustic scaling actually produces a better eoc. This can be explained
by the fact that in the first case (B.2) the spatial resolution has no effect on the error,
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Figure B.1: Temporal convergence of analytical source term.

whereas in the second case (B.4) it does and the spatial convergence is better than
the temporal.

If we now plot the error over the spatial grid number # in fig. B.2, we see again
a worse eoc for acoustic scaling. For diffusive scaling we see a much better eoc
for the exponential function, however we have to keep in mind, that that is more
a function of having scaled ΔB ∼ ΔF2 than anything else. The actual convergence
is close to one, since the reduction in ΔF does not actually decrease the error in
this case. For (B.4) we see an eoc of 2 for diffusive scaling, which is the optimal

1 10
N

10−3

10−2

er
ro
r

type
exp
sin
scaling
acc
diff
O(#−1)
O(#−2)

Figure B.2: Spatial convergence of analytical source term.

outcome and can be explained by the fact that in this case both the decreasing of
ΔB and ΔF contribute to the reduction of the error.
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